Quantum (Inspired) Computing

Unlocking value through solving complex problems

Name

Title

Fujitsu Company

FUJITSU-RESTRICTED

Quantum (Inspired) Computing

- Quantum Computing holds promise for solving the most complex challenges and unlocking new business advantage
 - BUT it will last years or decades until it will exploit its full potential (number of qubits required, error correction, ...)
- Fujitsu's approach to Quantum Computing is three prong
 - Quantum-Inspired: Solve large, industryrelevant optimization challenges today
 - Quantum Computer Simulator: Search for and start development of quantum algorithms
 - Quantum Gate: Develop Superconducting Quantum Gate Computer for hybrid quantum computing

Unlocking Value from Quantum (Inspired) Computing

Value Assessment, integration into business processes, ...

FUJITSU-RESTRICTED

Unlocking Value from Quantum (Inspired) Computing

Quantum Inspired: The use of computational methods inspired by the principles of quantum mechanics

FUJITSU Quantum-Inspired Computing

Digital Annealer - An available future-proof on-ramp to Quantum Computing for solving real-world combinatorial optimization problems today

Non-Quantum heritage

- Room temperature
- Classical circuits

CPU / GPU

Quantum-Inspired

- Inspired by Quantum Entanglement
 - Full-connectivity of all bits
- Inspired by Quantum Superposition
 - Massive parallelism, testing of up to 100,000 bit flips simultaneously
- Inspired by Quantum Tunneling
 - Fast escape from local minima

FUITS

Quantum Computer

Combinatorial Optimization Problems

Example: Welding robots optimization

Find best welding directions and optimal roundtrip between endpoints

# seams	10	65	
Possibilities	1.86 x 10 ⁸	2.34 x 10 ¹⁰⁸	

Typical problem characteristics

- Decisions being made are natively binary ("yes" or "no")
 - Does this robot perform this task at that time?
- The fitness of one decision depends on the state of other decisions
 - Is robot 1 in the working area of robot 2?
- The problem is difficult to solve
 - Huge number of possibilities / dependencies

Where Digital Annealer scores best

- Real time demands
- Solution quality demands
- Problems of higher order (quadratic)

Optimization problems are ubiquitous

 2/3 of <u>QUTAC</u> use cases can be formulated as QUBO or QAOA

Quantum-Inspired Optimization Projects (Excerpt) FUjiTSU

	Hamburg Port Authority	United States Army Analytics Group	Deutsche Bahn	Nippon Yusen Kabushiki Kaisha (NYK)
Use Case	Traffic Light Optimization	Logistics Optimization	Real-Time Schedule Optimization	Car Carrier Optimization
Situation	 20,000 trucks/day 35 intersections 	 10 inventory centers 15 staging centers 500 Demand regions 5 PPE Categories 	 70,000 path candidates 10^{20.357} possible schedules 	 10²⁰⁰⁰ (un)loading patterns 7000 cars, 12 decks 60 car types, 10 ports
Results	20% travel time9% CO2	1 90% improvement	 2h -> 4min compute time 10% more path request approvals 	4,000h planning time

Quantum-Inspired Optimization Projects (Excerpt) FUjiTSU

	MediaMarktSaturn Retail Group	Deutsche Telekom	Astroscale	Hospitals
Use Case	Supply Chain Optimization	Automatic Cell Planning	Disposal of Space Debris	Surgery Capacity Optimization
Situation	 400 stores 4 vehicle types Time windows, vehicle capacity, daily travel time / vehicle 	 Site selection problem: An area requires additional sites to improve coverage and service quality 	Optimize the flight path of spacecrafts for space debris disposal missions	 Surgeries contribute about 60% of a hos- pital's total revenue Hospital Operation Rooms represent major cost centers
Results	4,7% delivery costs	37x compute time40% quality	Fuel usage Efficiency of debris collection.	Calculations in seconds

Digital Annealer / Quantum Inspired Computing

Technology

Combinatorial Optimization and Quantum

FUIITSU-RESTRICTED

Digital Annealer in a Nutshell

- Special purpose hardware architecture for solving combinatorial optimization problems.
- Problem formulation as QUBO.
- Markov Chain Monte Carlo (MCMC) algorithm as basis to search for minimum of energy function.
- Speed-Up due to hardware implementation of MCMC.
 - Parallel search
 - Dynamic offset energy
 - Parallel tempering

minimum Global minimum

State

Current

state

Next state

 $E(\mathbf{x}) = \sum_{i=1}^{N} b_i x_i + \sum_{i=1}^{N} \sum_{j=1}^{N} w_{ij} x_i x_j \quad x_i \in \{0,1\}$

Workflow Digital Annealing

FUjitsu

DADK framework

- Create, manipulate, solve QUBOs using DA
- Rapid prototyping
- Load business data
- Visualize results

